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An expression for the near-contact pair correlation function of D-dimensional weakly polydisperse hard
spheres is presented, which arises from elementary free-volume arguments. Its derivative at contact agrees very
well with our simulations for D=2. For jammed states, the expression predicts that the number of exact
contacts is equal to 2D, in agreement with established simulations. When the particles are wetted, they interact
by the formation and rupture of liquid capillary bridges. Since formation and rupture events of capillary bonds
are well separated in configuration space, the interaction is hysteretic with a characteristic energy loss Ecb. The
pair correlation is strongly affected by this capillary interaction depending on the liquid-bond status of neigh-
boring particles. A theory is derived for the nonequilibrium probability currents of the capillary interaction
which determines the pair correlation function near contact. This finally yields an analytic expression for the
equation of state, P= P�N /V ,T�, of wet granular matter for D=2, valid in the complete density range from gas
to jamming. Driven wet granular matter exhibits a van der Waals–like unstable branch at granular temperatures
T�Tc corresponding to a first order segregation transition of clusters. For the realistic rupture length of the
liquid bridge, scrit=0.07d, the critical point is located at Tc=0.274Ecb. While the critical temperature weakly
depends on the rupture length, the critical density �c is shown to scale with scrit according to scrit

=4d���J /�c−1�. The segregation transition is closely related to the precipitation of granular droplets reported
for the free cooling of one-dimensional wet granular matter �A. Fingerle and S. Herminghaus, Phys. Rev. Lett.
97, 078001 �2006��, and extends the effect to higher dimensional systems. Since the limiting case of sticky
bonds, Ecb�T, is of relevance for aggregation in general, simulations have been performed which show very
good agreement with the theoretically predicted coordination K of capillary bonds as a function of the bond
length scrit. This result implies that particles that stick at the surface, scrit=0, form isostatic clusters. An
extension of the theory in which the bridge coordination number K plays the role of a self-consistent mean-
field is proposed.
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I. INTRODUCTION

Dry sand trickles easily through chinks and crevices, as
everyone knows well from the hour glass, or just personal
experience. However, the addition of small amounts of liquid
are sufficient to transform it into a plastic �or, more precisely,
a viscoplastic� material. The same is true for all granular
matter when a few volume percent of liquid are added, pro-
vided the latter wets the grains well and the grains are not
too large. It is understood that this dramatic change, from a
quasifluid to a solid behavior, is due to the formation of
liquid bridges �1–10� between the granules wherever they
come into contact. These liquid bridges mediate a cohesion
force, and rupture as soon as the particle surfaces are sepa-
rated by a distance scrit which scales as the cube root of the
amount of added liquid �10�. These processes of formation
and rupture of liquid bridges are the main cause of the ob-
served dramatic changes in the mechanical properties of the
material. Because of the generality of the effects, it has be-
come common to study systems with spherical grains �usu-
ally glass beads�, in order to ease theoretical modeling and to
avoid side effects. We decided to follow this approach.

In this work, we show analytically that the peculiar inter-
action by capillary bridges gives rise to a first order transi-

tion, and we compute the critical density and the critical
temperature. We shall focus on the two-dimensional case, but
many concepts carry over to dimensionality D=3. Since
there is no clear observation of a first order phase transition
in the hard-sphere fluid for D�2 �11,12�, the added liquid
leads to a qualitative change. More importantly, this transi-
tion is determined entirely by the geometric and energetic
properties of the capillary bridges.

A dry system of N hard spheres with diameter d confined
to an area or volume V has no intrinsic energy scale, so that
the equation of state is of the form P=Tf�N /V� with the
temperature T= �mvivi� and a nonlinear density dependence,
f . The defined size of hard particles is conveniently used to
restate the density n=N /V as the dimensionless occupied
fraction �=�DndD / �2DD� ��D the surface of a
D-dimensional unit sphere�, which is the area fraction �
= �� /4�nd2 for two, and volume fraction �= �� /6�nd3 for
three dimensions.

The capillary interaction of wet granular matter has a
well-defined binding energy Ecb �10�, and it has been dem-
onstrated experimentally �13� under realistic dynamical con-
ditions with impact velocities typical for strongly fluidized
wet granular matter that the hysteretic character of the inter-
action is essential: The dominant mechanism of dissipation is
the hysteretic formation and rupture of capillary bridges, the
energy Ecb of which is irreversibly taken from the kinetic
energy of the granular motion whenever a liquid bridge rup-
tures �10�. The bridge energy has been quantified �10,13�,
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according to which Ecb is proportional d2�W. W is the vol-
ume fraction of the added liquid with respect to the total
volume of the jammed granular sample. Figure 1 illustrates
this hysteresis in the Minimal Capillary model �10� applied
here, which assumes a constant bridge force Fcb. This may
appear as an oversimplification at first glance, but there is
increasing experimental evidence that the details of the force
law are insignificant for the collective dynamics on which we
focus here �10,13,14�, as also confirmed from the point of
view of dynamical systems theory �15,16�.

Obviously, an external energy current has to be continu-
ously injected to drive the system into a nonequilibrium
steady state. In the equilibrium limit, Ecb→0, we will have a
pressure of the form P=Tf���. It is the objective of this
article to derive the equation of state for the hysteretic liquid
bridge interaction of wet granular matter in such a driven
state. In view of the intrinsic energy scale Ecb, this relation
has to be of the form P= P�� ,T /Ecb�.

The equation of state is understood as an intrinsic prop-
erty of homogeneous wet granular matter, kept in a station-
ary nonequilibrium state of granular temperature T. With this
given temperature we may subsume various ways in which
the system can be externally driven to compensate for the
dissipation by rupturing liquid bridges, so that this granular
temperature T is maintained over many particle diameters.

We remark that in most experimental situations involving
wet granular matter, the granular temperature is a nonlinear,

even discontinuous, response depending on the details of the
driving, such as boundary motion or air flow in air-fluidized
beds. In this article we deliberately regard the granular tem-
perature as the control parameter, so that the theoretical de-
scription of the boundary coupling is conveniently separated.
Yet we emphasize that for the full description of an experi-
mental situation one has to insert the equation of state into
the equation for the external energy input, and then solve for
the granular temperature as the nonlinear response to the
external driving.

We aim at describing the steady nonequilibrium states of
wet granular matter, which are so multifaceted that at first
glance one might think that aside from density and granular
temperature further physical parameters are necessary in or-
der to describe such a state. Yet as simulations have shown,
states of wet granular matter far from equilibrium �17� are
very well described by a single granular temperature T as-
suming a Gaussian velocity distribution, neglecting higher
cumulants. Furthermore, it is known that the self-organized
velocity distribution of free cooling wet granular matter has a
vanishing fourth cumulant �18�. We point out that the condi-
tion of a locally isotropic and homogenous state used in this
work implies that the temperature field may vary only slowly
over many particle diameters so that there is no strong influ-
ence by a heat current, which would otherwise be considered
as a third parameter of the local nonequilibrium state.

Throughout this study, we allow for a certain polydisper-
sity, 0��d /d�0.1. �For higher polydispersity, the dense
system undergoes a kinetic glass transition �19,20��. First of
all, polydispersity is frequently used in simulations and ex-
periments to prevent the monocrystalline state. Secondly,
most systems of practical relevance exhibit some polydisper-
sity. Another characteristic of “real” granulates is that the
surfaces of the grains are not ideal, bearing certain rough-
ness. This does, however, only change the amount of liquid
which must be added in order to achieve the capillary inter-
action: First some liquid is required to fill the crevices and
tiny recesses in the grain surfaces, until the grains effectively
have a smooth liquid coating, which is then completely wet-
ted by all additional liquid. For glass beads, as those used in
most of the experiments, this is typically the case above a
volume fraction Wmin=0.1%. We also require an upper limit
on the volume fraction of the wetting liquid, so that the
maximal length scrit of liquid bridges is of the order or below
the polydispersity �d of the spheres. This is to demand that
scrit /d��3W /3 is smaller than �d /d�0.1, so that W�Wmax
=2.8%. This happens to closely coincide with the upper limit
set on the liquid content to ensure that neighboring capillary
bridge do not merge �21�. For this range of the liquid content
the capillary interaction is a truly pairwise interaction with
the capillary force acting radially between pairs of particles.
Another implication of roughness is that there is a substantial
tangential friction between adjacent grains. This means that
in principle one has to include all rotational degrees of free-
dom in the kinetic considerations for any statistical physical
treatment of our system. However, we are here focussing on
the effects due to the liquid capillary bridges, which mediate
central forces. These do not couple to the �tangential� rota-
tional modes. We therefore expect that the rotational degrees
of freedom play, in our system, the role of a spectator heat
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FIG. 1. �Color online� The hysteretic interaction in wet granular
matter. �a� Capillary bridges form at contact and mediate an attrac-
tive force Fcb. At the bridge length scrit the bridge becomes unstable
and pinches off. �b� This hysteretic interaction by capillary bridges
gives rise to a well-defined loss of energy denoted by Ecb. The
rupture length scrit is largely exaggerated for illustration. While the
particle diameter d is the only length scale for dry granulates, in wet
granular matter there is a second scale set by scrit. A realistic value
is scrit�0.07d, which is realized when 1% of the jamming volume
is added by a wetting liquid �with zero contact angle�. Furthermore,
the bond energy Ecb defines an intrinsic energy scale, which is
absent in dry granulates. As it is shown, the length and energy scale
set by the capillary interaction give rise to a phase transition with a
critical density �c and a critical granular temperature Tc.
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bath which follows the translational dynamics, but does not
influence it greatly, aside from a quantitative increase of the
granular specific heat. In fact, recent experiments and simu-
lations of wet granular systems �14� show that this approach
yields remarkable agreement with experimental data. In this
work, we thus completely neglect all rotational degrees of
freedom.

II. DRY SPHERES AS STARTING POINT

Before we add the wetting liquid to the hard sphere sys-
tem, we investigate the dry case in this section and derive
expressions for the pair correlation near contact, which will
be extended to the wet case in the following section.

Due to their finite size, the positions of hard spheres are
not distributed independently from each other, as it is the
case for the point-particles of the ideal gas. The configuration
space of N spheres is not VN, but restricted to a concave
subset in which the systems moves chaotically as a high
dimensional billiard. With the absence of an intrinsic energy
scale, the dry system is athermal, which means that a change
in temperature is equivalent to rescaling the time axis. The
excluded volume gives rise to correlations in the particle
positions, which are measured by the pair correlation
function. Denoting by n=N /V the mean macroscopic par-
ticle density and by nm�r�=	i

N��r−ri� the microscopic
density, the isotropic pair correlation G�r� is defined as the
probability

�nm�r��particle at 0d vol = nG�
r
�d vol = n g�s�d vol �1�

to find the center of a particle in the shell d vol=�Dr�D−1�dr
of radius r=ri+rj +s and thickness dr=ds centered around a
reference particle. We have conveniently subtracted the par-
ticle radii ri+rj in the last equality of Eq. �1�, so that s	0 is
the surface separation. The function g�s� is advantageous for
polydispersity scattered around the mean diameter d �22�,
because of its defined contact point, s=0, which is smeared
out in the function G�r�. Furthermore it is the natural way to
describe an interstitial liquid bridge between the considered
pair of particles, with s the length of the bridge. For a certain
liquid volume per particle and contact angle of the wetting
liquid, there is a well defined critical bridge length scrit at
which the bridge becomes unstable and ruptures. The mean
density n is factored out in Eq. �1� so that the dimensionless
g would be equal to unity for all separations if there was no
particle-particle correlation. Figure 2 shows the pair correla-
tion of a fluidized state in which long range order is lost, so
that g�s�, respectively G�r�, tends to unity for r�d.

The forces in wet granular matter, hard-core repulsion and
liquid bridge attraction, are short-ranged and radial, acting
between pairs of particles over a separation range 0�s
�scrit with scrit
d. We are therefore interested in the short-
range behavior of the pair correlation g�s� up to leading or-
der in s /d. For such short particle separations the pair corre-
lation g�s� is �up to a normalization constant� just the
probability to find next neighbors at a separation s. Put in
equivalent words: Decomposing the pair correlation function
g�s�=	k=1

� gk�s� in contributions gk of the k’s shell of Voronoï

neighbors, we have g�s�=g1�s� in the range of interest, 0
�s�scrit
d. To shorten notation we suppress the subindex
1.

A. Dense limit

Figure 3 gives an overview of results by �20�, �23� �Fig.
15 therein�, and �24� for the phases of the two-dimensional
system depending on density and polydispersity. For polydis-
persity below 0.1, there are two density regimes separated by
the ordering transition at �o �25�. These transitions are a
purely geometric property �i.e., excluded volume effect� of
the configuration space and are therefore athermal. To com-
pute the radial next-neighbor distribution at densities above
the critical density, �	�o, we consider the Voronoï tessel-
lation of the system, which embeds each particle into a con-
vex polygonal cell. The sizes �Vi� of the Voronoï cells scale
as �d+s�D, where the particle separation is denoted by s. For
instance in D=2, the area of a single Voronoï cell in the
ensemble is given by 	 j�2�d+sj��d+sj+1�− ��d+sj�2+ �d
+sj+1�2�cos � j� / �8 sin � j�. This formula holds for direct and
indirect Voronoï neighbors, and averaging over the angles � j
between neighbors yields C�d+s�2 on the mean-field level,
where we use a single separation s in accordance with the
assumption of an isotropic state. �The assumption of isotropy
will be relaxed in the discussion of clustering in wet granular
matter in Sec. IV A.� In what follows we eliminate the ge-
ometry factor C in favor of the jamming density. The mean

FIG. 2. �Color online� The pair correlation of wet granular mat-
ter in a fluidized state resulting from a molecular dynamics-type
simulation in D=2 dimensions. The correlation function G�r� van-
ishes in the range �0,d� where the finite particle size leads to ex-
cluded volume. We use the function g�s� with the surface separation
s of neighboring particles as it is convenient for wet granular matter
where interstitial liquid bridges have the length s. Note that this is
not exactly identical to the function G�d+s� shifted by one particle
diameter d, since a realistic granular system has some polydisper-
sity �d around the mean diameter d. Aside from kinetic contribu-
tions, the pressure is due to the interaction forces which become
dominant with increasing density. The internal forces in wet granu-
lar matter are short-ranged. Therefore our interest focuses on the
sharp fall-off in the indicated range 0�s�scrit of capillary interac-
tion. This highlighted region indicates the typical range of scrit, and
corresponds to the region highlighted in Fig. 4. Furthermore, we
derive more detailed correlation functions, gu�s� and gb�s�, for un-
bound and capillary connected pairs, respectively, in order to de-
scribe the hysteretic interaction in wet granular matter.
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cell size 	i
NVi /N=V /N=1 /n is exactly the inverse density n.

Hence


�1 +
s

d
�D� =

n�s → 0�
n

=
��s → 0�

�
, �2�

where the triangle brackets denote averaging over next
neighbors which are in contact �s→0� with the center par-
ticle at the jamming density ��s→0�. We refer to those pairs
of particles which come into contact at jamming as neighbors
of type A, i.e., the surface separation sA of A neighbors is

sA = 0 at � = �J. �3�

In the monodisperse limit for D=2, �J assumes the value of
the triangular crystal, �max=� / �2�3�=0.91. Polydispersity
decreases the �maximal random� jamming density �J and

increases the critical density �o for the onset of triangular
order as shown in Fig. 3.

1. Contribution to the contact correlation: The A neighbors

Since the Voronoï cells exchange their free volume, V
−Vmin
 �1+s /d�D−1, and the total volume is conserved we
assume an exponential distribution of the free volume, which
is well confirmed by experiments with dry granulates �28�.
Conditions �2� and �3� determine the A-neighbor distribution
uniquely:

PA�s�d vol�s� =
D/��DdD�
�J/� − 1

exp�−
�1 +

s

d
�D

− 1

�J/� − 1
�d vol�s� .

�4�

The volume element for D=2 is

d vol�s� = �Dr�D−1�dr = �d�1 + s/d�ds . �5�

The contribution gA which A-neighbors give to the pair cor-
relation is equal to the A-neighbor distribution PA �4� up to a
prefactor, so that

gA�s� = gc
at exp�−

�1 +
s

d
�D

− 1

�J/� − 1
� �6�

is determined as soon as we know the athermal contact
value, gc

at=gA�0�. This contact value follows from the classi-
cal free volume theory �29� �which was based on �30��,

P

nT
=

D

�J/� − 1
+ O�1� , �7�

in conjunction with the general relation between the particle-
wall correlation gwall

at and the pair correlation gc
at,

P

nT
= gwall

at = 1 + 2D−1�gc
at. �8�

As a consequence, we obtain

2D−1

D
�gc

at =
1

�J/� − 1
�9�

close to jamming. Expression �9� is exact for D=1, and has
been confirmed as the asymptotic behavior of the diverging
pressure close to jamming for D=2 �26,31� in event-driven
simulation with accuracy 10−4. We remark that this expres-
sion is not limited to weak polydispersity and has been con-
firmed for polydispersity far above 0.1 in the glass state
�32,33�.

Inserting Eq. �9� in Eq. �6�, we have as our first central
result a closed expression for the near-contact pair correla-
tion of neighbors which form exact contacts in the jamming
limit �so-called A neighbors�:

gA�s� = gc
at exp�−

2D−1

D
�gc

at��1 +
s

d
�D

− 1�� . �10�

Equation �10� implies for the derivative at contact,
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FIG. 3. This plot reviews �20,23� �Fig. 15 therein�, and �24�. The
athermal transitions shown are properties of the configuration space
of hard disks. Since the wet granular dynamics takes place in this
configuration space, results for hard disks form the starting point for
a theory of wet granular matter in two dimensions. At low �gas� and
moderate �fluid� densities �, the configuration space is probed er-
godically and the system has low shear viscosity. As density is
increased, the system gets trapped in a disordered state �glass for
polydispersity above 0.1�, or in a state with local triangular order.
Both transitions, the glass transition �vertical line at ��0.80� and
the ordering transition �curved line ending at �o=0.71� can be de-
tected by the rapid increase of the shear viscosity � �cf. �26� for the
ordering transition�. While there is an athermal first order transition
in three dimensions, it is at present discussed in the literature
whether the transition region �double lines ending at �o� represents
a fluid-solid coexistence �corresponding to a weak first order tran-
sition with a small jump of the entropy per particle� or if there is an
intermediate hexatic phase �according to the Kosterlitz-Thouless-
Halperin-Nelson-Young scenario� �11,12�. As the packing fraction
� is increased further, the islands to which the system is confined in
the configuration space shrink to points. This jamming limit can be
detected by the divergence of the pressure P �at fixed granular
temperature� under compression �for example using the particle ex-
pansion of the Lubachevsky-Stillinger algorithm�. The maximal
random jammed state �MRJ, for strict jamming as defined by
Torquato, Truskett, and Debenedetti �27�� is the vertical curve at the
right. Densities higher than MRJ are deep in the glassy regime.
From the thermodynamic point of view, the system would cluster in
phases separated according to the particle size, but this eutectic
freezing-transition is kinetically suppressed �23� and unreachable.
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dgA� �0� = − 2D−1�gA
2 �0� , �11�

a quadratic dependence on the contact value gc
at=gA�0�.

Equation �11� can be viewed as a consequence of normaliza-
tion: The height of the contact peak is gc

at and so the width is
of the order 1 /gc

at, which means that the negative slope is of
the order gc

2. In fact, writing the A-neighbor correlation func-
tion gA�s� in terms of the contact value gc

at, as we did in Eq.
�10�, is the natural form to express the density dependence of
gA because this manifests that the coordination number of A
neighbors is density independent:

KA = n� gAd vol =
2DD

d
�gc

at�
s=0

�

exp�−
2D−1

D

��gc
at��1 +

s

d
�D

− 1���1 +
s

d
�D−1

ds

=2D . �12�

More significantly, KA equals exactly the isostatic contact
value 2D, which is obviously correct for particles on a line
�D=1� and is the accepted value for ideal disks and spheres
in D=2 and D=3 dimensions respectively �23,34,35�. The
finding �12� is an essential confirmation of consistency of our
approach, since it is independent from conventional argu-
ments based on the rank of the rigidity matrix �which ac-
counts for global constraints on the degrees of freedom� �34�.

As the contact value gc
at �9� grows to infinity in the jam-

ming limit, �→�J, the constant integral �12� implies that n
gA�s� becomes a delta distribution with “weight” 2D at con-
tact, s=0.

2. Background contribution: The B neighbors

The configuration space is spanned by all particle posi-
tions �ri�. Consequently, a jammed configuration is—aside
from a small fraction of rattlers �36�—an isolated configura-
tion point, and the set of jammed configuration is a set of
discrete points. When the density is slightly relaxed, a finite
system remains confined to a finite environment around the
jamming point �cf. �37�, p. 35�. As density is lowered further,
these environments are no longer isolated so that the system
is able to migrate between these “islands of jamming.”

The stability analysis of contact networks �34,38–41� has
put forth the result that frictionless spheres �except for the
singular limiting case of a monodisperse crystal� jam strictly
in an isostatic packing with 2D contacts per particle on av-
erage, as confirmed numerically �34� for D=3, be the state
random �glass regime in Fig. 3� or locally ordered. Therefore
we can identify within an island of jamming on average four
neighboring particles in D=2 dimensions which are close to
the reference particle, and which will be in contact with the
reference particle, sA→0, in the jamming limit, �→�J.
These are the A neighbors with the contribution gA to the
pair correlation derived in Eq. �10�. Furthermore, it is a
mathematical fact that any discrete set of points in flat two-
dimensional space has on average six Delaunay-Voronoï
neighbors �42�, two of which have no contact to the refer-
ence particle, gB�0�=0. Hence, on the mean field level the

following picture arises: Beside the four A neighbors there
are two B neighbors which are sterically hindered by other
particles from further approach to the reference particle.
Summing up the contributions of A and B neighbors,

gdense�s� = gA�s� + gB�s� , �13�

gives us the pair correlation function near contact.
The pair correlation near contact which arises from these

blocked states, gB, is discussed in detail in Appendix A. The
essential result is that the configuration space of blocked
states tends quadratically to zero in sB, so that to leading
order the normalization of two B neighbors for D=2 deter-
mines the B contribution in Eq. �13�:

gB�sB� = NPB�sB� =
1

�cB
3 � sB

d
�2

e−��1 + sB/d�2−1�/cB�1 + O� sB

d
��

�14�

with cB=�max /�−1. In Fig. 4 the resulting near-contact pair
correlation �13� for the dense regime is shown as the sum of
gA and gB.

B. Dilute and moderately dense regime

In this part we turn to the free rheological regime, 0��
��o. When two spheres are closer than one diameter, s�d,
they shield each other from certain collisions events. If one
was to neglect three-particle correlations, the isotropic bom-
bardment by “third” particles gives rise to the well-known
attractive depletion force first proposed by Asakura and
Oosawa �43,44�. As is evident from Fig. 5, summing up
equal contributions over the accessible cross section is
equivalent to the pressure exerted onto the submanifold in-
dicated by the solid line in Fig. 5�c� and denoted by �.

This depletion force, as well as the liquid bridge force
which we will take into account in the next section, will
affect the pair correlation function. A systematic way to
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FIG. 4. �Color online� The pair correlation near contact resulting
from free-volume considerations. Close to jamming we distinguish
between neighbors which form exact contacts in the jamming limit
�contribution gA, Eq. �10�� and those that are blocked at positive
separation s �curve gB, Eq. �14��. The near-contact correlation is the
sum of both contributions. For this plot the density is chosen to �
=0.8. The dashed curve sketches a typical second shell consisting of
the second Voronoï neighbors. They are out of the interaction range,
0�s�scrit, which is indicated by the highlighted stripe.
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study this effect has been worked out by Hansen et al. �45�,
resulting in a Fokker-Planck equation for the two-particle
distribution function. After integrating out the momenta and
the center of mass coordinates, one finds that the depletion
force as well as other nonentropic pair forces �such as the
liquid bridge force�, give rise to a Boltzmann factor,

g�s� 
 exp�−
V�s�

T
� . �15�

For the depletion force

Fdepl = − Vdepl� = Tngc
at� , �16�

where

n gc
at�ds =

dVconf

Vconf
= − d ln g�s� �17�

is the infinitesimal logarithmic change of the excluded area
�or the configuration space per particle, Vconf�, when the par-
ticles are separated by s�d, and � denotes the size of the
corresponding section �line or area� in Fig. 5�c�. At contact,
s=0, the size of the integration section � is

� =
�D−1

D − 1
��3

2
d�D−1

, �18�

which yields Vdepl to leading order in s. The depletion effect
with the potential

Vdepl

T
=

9

2
�gc

at s

d
�1 −

s

3d
− � s

3d
�2� �19�

for D=3 has been confirmed in �46� by computer simula-
tions. Polydispersity is known to have a minor effect on the
depletion attraction �47�. For D=1 Eq. �17� gives the Poisson
distribution Vdepl /T=�gc

ats /d which is exact only for D=1.
In two dimensions, the depletion potential is

Vdepl

T
=

2

�
�gc

at�4 arctan
�vol

W
+ �volW − C� �20�

=2gc
at �

�max

s

d
+ O� s

d
�2

�21�

for D=2 with �vol�s�=1+s /d, the square root W�s�
=��1−s /d��3+s /d� and the constant C=2� /3+�3 to have
Vdepl=0 at s=0. The first line �20� is valid for 0�s�d, and
the second line �21� suffices for the region of interest, 0�s
�scrit
d. For the application of results on the near-contact
decay of the pair correlation function, such as Eq. �21�, we
prefer the exponential notation �used before in the dense case
�10�� because it is most elegant to perform volume integra-
tion:

gAO
dilute�s� = gc

at exp�−
�

�max
gc

at��1 +
s

d
�2

− 1���1 + O� sB

d
�2�
�22�

for D=2. In this notation the dilute and dense behavior of the
pair correlation are conveniently compared, showing that the
result �22� for the gaseous-fluid regime differs by the factor
1 /�max=1.10 in the exponent from the dense result �10�
close to jamming, so that according to Eq. �22� the depletion
force falls-off slower than the configuration density �gc

at. We
will now show that this is due to an overestimation of the
depletion force, caused by neglecting correlated three-
particle events: When the plane of incidence of the third
particle closely coincides with the symmetry plane �, the
incoming particle will hit in short sequence the pair of par-
ticles considered, which increases very effectively the ex-
change of momentum, i.e., the depletion attraction is re-
duced.

To determine analytically and numerically the effect of
correlated collisions which correct the Asakura-Oosawa re-
sult �22� we define the dimensionless measure

Z =
4

�

Fdepl

nTdgc
at = −

dgc�

�gc
2 , �23�

for which the Asakura-Oosawa approach �16� and �18� gives
ZAO= �4 /���3�2.205 �line A in Fig. 7�. When we take cor-
related three-particle events into account, there are three con-
tributions. First, an attractive contribution Z1	0 due to col-
lisions on the front side of the pair, indicated by “1” in Fig.
6, which fall in the range −� /2���� /2. The correspond-
ing value Z1 is easily integrated. Isotropy of the state de-
mands that the angle � between the symmetry axis of the
pair P�P and the incoming momentum pi is uniformly dis-
tributed, as well as the impact parameter b �cf. Fig. 6�. These
collision parameters are related by �� ,b�= ��+� ,d sin �� to
the position � on P and the angle of incidence � with respect
to the normal of P, which implies that � is uniformly dis-
tributed and � is weighted by the cosine-factor cos �. Inte-
gration over −� /2���� /2 yields the axial force contribu-
tion

F1 = 2Tngc
atd , �24�

so that Z1=8 /��2.546.

(c)(b)(a)

FIG. 5. Origin of the depletion force attracting neighboring par-
ticles that are separated by less than a particle diameter. One may
either think of this as an entropic force, due to the decrease of
excluded volume when the shells of excluded volume overlap.
Equivalently one may view this as the net force due to isotropic
bombardment. Obviously, the integration over the solid arc in �a� is
up to a sign equivalent to the integration in �b�. In �b� the integra-
tion is over the outer solid arc, which is the configuration space of
the third particle’s coordinate at impact. Since the integration in �b�
is projected by a cos factor to give the axial symmetric force com-
ponent, we can equivalently drop the cos factor and integrate over
the submanifold indicated by the solid line � in �c�.
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Secondly, the attraction is weakened by collisions hitting
P in the remaining range � /2� 
�
��max�s� �which we refer
to as the “broad side”� giving rise to Z2�0. At contact
�max�s=0� is 2� /3. For these collisions the incidence is
shadowed by the partner particle P� so that the angle of
incidence � is restricted to −� /2����max���. �Confer the
collision event “2” in Fig. 6.� Some trigonometry determines
�max�s ,�� by the relation

�1 + �vol�s�cos ��sin �max = 1 − �vol�s�cos �max sin � ,

�25�

which allows for an explicit function of � at s=0:

2 cos �max��� = tan
�

2
− �1 + 2 cos � . �26�

After integrating over the impact momenta pi in the rest
frame of P, the axial force imposed on P is

F2�s� =
4

�
Tngc

atd�
�/2

�max�s�

d� cos ��
−�/2

�max���

d� cos2 � ,

�27�

where the cos � projects the force on the symmetry axis of
the pair PP�. The cos � factor appears quadratically in the
integrand �27� because of the cosine-distribution �or equiva-
lent, because the Enskog collision frequency is proportional
to the radial velocity �pi /m�cos ��, and the transferred mo-
mentum which is pi cos �. Symmetry allows us to integrate
over the upper half, � /2����max�s� in Eq. �27� and mul-
tiply by 2 with the general result

Z2�s� =
8

�
�

�/2

�max�s�

d� cos ��1

2
+

�max�s,��
�

+
sin 2�max�s,��

2�
� , �28�

and the numerical value Z2�0�=−0.328 13�9�.
Thirdly, the most obvious and important correction on the

three-particle level comes from double collisions denoted by
3 in Fig. 6. The third particle hits first P� �gray arrow in Fig.

6� from the broad side at ��� �� /2,�max�. The radial com-
ponent pi cos �� of its incoming momentum pi is transferred
to P�, which is why the third particle moves on tangentially
to the circular cross section of P� with momentum pi sin ��
to collide shortly afterwards with particle P. Here the mo-
mentum transferred is the radial component with respect to
P, pi sin �� cos �, so that

F3�s� =
4

�
Tngc

atd�
�/2

�max�s�

d�� cos �����cos ��s,����
0

�max�s,���

�d�� cos �� sin ��. �29�

The collision point on P� described by ����� is related to �
�the subsequent collision point on P� by cos���−��=1
+�vol�s�cos �. The incident angle � on P is independent of ��
and given by sin ��s ,���=1+�vol�s�cos ��. After the elemen-
tary �� integration we find

Z3�s� =
8

�2�
�/2

�max�s�

d�� cos �����cos ��s,���sin2 �max�s,��� ,

�30�

and Z3�0�=−0.091 593�7�. Summing up the three contribu-
tions gives Zcorr=	i=1

3 Zi�2.127 which is shown as the line B
in Fig. 7.

Based on our numerical data shown in Fig. 7, we shall in
the sequel assume the value

1

23

�

�

PP'
�

b

�'

FIG. 6. Three contributions to the effective force between a pair
of particles P and P�. The collisions events 1 are attractive, while
the events 2 cause a weaker repulsive forces. Furthermore, the
attraction is weakened by the temporally correlated collisions
events 3.

A

B

C

A: Asakura-Oosawa
B: 3-Particle Collision Events
C: Dense Functional Form

-
'(
0
)

(0
)

d
g g

�
2

�

FIG. 7. Functional test of the near-contact pair correlation �32�.
The vertical axis is proportional to the depletion force, Fdepl

−d lng /ds at contact, divided by the configuration density �gc

at. This
fraction Z is predicted to be density independent by Eq. �32� and to
assume the value Z=2 �line C�. Line A corresponds to the classical
Asakura-Oosawa result, which is only valid for large beads im-
mersed in a bath of small beads. In line B the corrections due to
temporally correlated collisions events �derived in the text� have
been taken into account. These events occur when a third particle of
equal size strikes a pair of particles with a given separation s
d as
sketched in Fig. 6. We proceed using the value Z=2 �line C� be-
cause it agrees best with the simulation. Furthermore, Z=2 corre-
sponds to a near contact correlation function which is of exactly the
same form as the function gA we use in the dense case, when
expressed in terms of the configuration density �gc

at���.
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Zsim = 2. �31�

By virtue of good statistics the simulation at �=0.097 gave
Zsim=2.0009�0.0050, and Fig. 7 suggest this result to hold
with few percent limits very well over the entire density
regime 0����o considered in this subsection. The value
Z=2 determines the near-contact pair correlation uniquely to
be

gdilute�s� = gc
at exp�− �gc

at��1 +
s

d
�2

− 1���1 + O� sB

d
�2�

�32�

for D=2. Satisfactorily, this result �32� has exactly the same
functional dependence on the configuration density �gc

at as
the formula put forward for the dense case �10� in the previ-
ous subsection. While three-particle collisions are obviously
important since they shift Z in the right direction, no analytic
explanation for this coincidence corresponding to the value
Z=2 is provided at present. Yet we shall see in the next
section that any value other than Z=2 would lead to incon-
sistencies when we introduce the liquid bridge interaction.

We finally remark that the result �32� strongly differs from
the “Poissonian fluid” �48�, for which the contact correlation
gc

at−1	0 is ignored. Even at the lowest density ��=0.1�
considered in Fig. 7 the Poisson fluid would give ZPoisson��
=0.1�=1.7 which is 15% below the simulation value, and the
deviation from Z=2 grows with density �.

III. PAIR CORRELATION UNDER THE HYSTERETIC
INTERACTION

In this section we dress up the pair correlation function in
order to describe the status of the liquid bonds which are
created and ruptured hysteretically in wet granular matter.
We will proceed in two steps. First, we introduce in Sec.
III A the liquid bridges as hysteretic but forceless objects
which follow the unperturbed particle dynamics. As a result,
a direct relation of the dynamical system and the limiting
case of isostatic granular packings �35,41� at rest is found. In
Sec. III B we turn on the liquid bridge force to its physical
value, so that the bridges unfold their backreaction on the
granular dynamics. In the limit of low granular temperatures,
T
Ecb, the particles stick together. For this frozen state of
wet granular matter the bridge coordination K is computed
analytically as a function of the rupture length scrit, and we
find very good agreement with simulations.

A. Hysteretic coupling

Due to the hysteretic interaction, the pair correlation g is
no longer a function of the particle separation s. In order to
include the knowledge about the collision history the con-
figuration space has to be enlarged in two respects: Obvi-
ously we distinguish between pairs with and without liquid
bridges, which we denote by superscript indices, gb�s� and
gu�s� respectively, for “bridged” and “unbridged” neighbors
�cf. Fig. 8�. In addition, time reversal-symmetry is broken by
the formation of the capillary bridge at contact. Hence we
distinguish approaching pairs �with a negative relative veloc-

ity� which might collide and form a liquid bridge in the
future, and those that move apart so that they can rupture the
liquid-bond in the future. This relative velocity is denoted by
a subscript arrow.

As we discuss the radial pair distribution, contact and
rupture become the important points on the s axis of the pair
correlation function. At these points the functions gb and gu

are coupled according to the hysteretic transition of the bond
status. We use an intuitive notation, writing c and r in the
subscript for contact and rupture distance, respectively:

gc← r�
u = �

The probability for a pair

at rupture distance

approaching without

bridge,
�

gc�→r
b = �The probability for a pair

at contact

moving away with bridge,
�

etc.

A configuration at contact, s=0 �or to be more precise: the
right-sided limit s=0+�, is denoted by a circled c�, and the
rupture at s=scrit by the circled r�. The uncircled letter al-
lows to conveniently indicate the direction of motion with
the arrow. Infinitesimally close to contact, there are four de-
tailed correlation values: the bridge-connected and the un-
connected states, either particularized by the sign of the rela-
tive velocity. The same is true for the left-sided limit s
=scrit− of the rupture point. An infinitesimal distance beyond
this point, at s=scrit+, there is only the unbound state possible
with the two signs for incoming and outgoing velocities. This
gives us in total ten detailed pair correlation coefficients.

gas fluid

d+scrit

d unbridged unbridged

bridged unbridged

unbridged unbridged

bridged unbridged

FIG. 8. The hysteretic interaction in a wet granular gas or fluid
can either lead to scattering or bound states. Note that the formation
and rupture of the liquid bridge is spatially separated, which gives
rise to a hysteretic loss and a coupling between the pair correlation
functions gb for neighbors with and without, gu, capillary bridge. In
this sketch the maximal liquid bridge length scrit is drawn largely
exaggerated. For a typical volume fraction of 1% wetting liquid
added to the volume of jammed granular matter one finds scrit /d
�0.07 �10�.
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These are determined by the following ten equations describ-
ing the hysteretic flow of probability, as it can be read off
from Fig. 8.

Conditions on the contact shell

gc�→r
u = 0, �33�

gc�→r
b = gc�←r

u + gc�←r
b . �34�

Equation �33� expresses that no particles rebound without a
liquid-bond, but rather that all return with a bridge as stated
by Eq. �34�. This implies that the particle number is con-
served in collisions �in contrast to the absorbent dynamics
modeled in �18� for D=1�.

Domain of capillary interaction

gr�
b = �b�scrit�gc�

b , �35�

gr�
u = �u�scrit�gc�

u , �36�

gc→ r�
u = �passgc← r�

u �37�

The functions �u�s� and �b�s� take into account the near-
contact decay of the pair correlation without and with liquid
bond, respectively. The last Eq. �37� describes spectator
grains, i.e., grains which pass through the domain of possible
capillary interaction without bridge formation. The fraction
of these passing particles, �pass=1− �1+scrit /d�1−D �=1 / �1
+d /scrit� for D=2� equals the gap between the considered
cross section �2d+2scrit�D−1 of the capillary interaction and
the hard-core cross section �2d�D−1.

Conditions on the rupture shell

gc← r�
b = 0, �38�

gc← r�
u = gc r�←

u , �39�

gc→ r�
b + gc→ r�

u = gc r�→
u . �40�

Equations �38� and �39� state that only unbound particles
enter the domain of capillary interaction, and Eq. �40� de-
scribes the rupture of a capillary bridge when the pair es-
capes from the domain.

The hysteretic capillary dynamics is coupled to the hard
particle dynamics by the source term of new unbound pairs
of particles entering the capillary interaction range.

Source term

gc�←r
u + gc← r�

u /�u�scrit� = �1 − K/Ksites�gc�
at . �41�

The left-hand side is the current of approaching unbound
neighbors �measured at contact�. If all neighbors were un-
connected, K=0, this current would equal the dry value gc�

at.
But since there are K neighbors with bonds out of the Ksites
“docking sites” which are sterically accessible for liquid
bonds, the remaining unconnected fraction is 1−K /Ksites.

The final tenth equation is the stationary state condition,
which demands that the rupture frequency equals the binding
frequency:

Stationary state condition

fbind = f rupt. �42�

These frequencies follow from the probability to have a
particle on the collision or rupture shell, respectively, multi-
plied by the radial component of the relative velocity under
the condition that the particle moves in the appropriate di-
rection for the event to occur. This is analogous to the case
D=1 �17�, with the only difference that here we have to
integrate over shells:

fbind = 2D+1D�T

�

�

d
gc�←r

u , �43�

f rupt = 2D+1D�T

�

�

d
gc→ r�

b �vol�scrit� . �44�

The volume factor �vol�s�= �1+s /d��D−1� takes the increased
size of the outer rupture shell as compared to the inner bind-
ing shell into account.

Eliminating those correlation coefficients that are identi-
cally zero, Eqs. �33� and �38�, we can arrange the coupling
equations for the domain of capillary interaction as a 6�6
matrix system:

Collision:

With Bridge:

Unconnected:

Stationarity:

Spectators:

Source:

�
1 1 − 1 0 0 0

0 �b �b 0 − 1 0

�u 0 0 − 1 0 − 1

− 1 0 0 0 �vol 0

0 0 0 − 1 0 �pass

1 0 0 0 0 1/�u

�
��

gc�←r
u

gc�←r
b

gc�→r
b

gc→ r�
u

gc→ r�
b

gc← r�
u

� = �1 − K/Ksites�gc�
at�

0

0

0

0

0

1

� . �45�

The �-functions in the matrix are to be evaluated at s=scrit.
As it has to be on physical grounds, this system is nonsingu-
lar with determinant �1+scrit /d�D−1�2+�pass��b�scrit�	0.

The last row of the system �45� describes the creation of
new liquid bridges as discussed before in the context of the
equivalent Eq. �41�. We remark that here we used that the
correlation gc�

at of the dry system at contact has equal contri-
butions from positive and negative relative velocities, imme-
diately before and after the collision, which is still true for
the wetted elastic particles we consider. This symmetry be-
tween positive and negative radial relative velocities is bro-
ken if one wishes to introduce a restitution coefficient 0��
�1 to model inelastic collisions: the contact correlation of
positive velocities is then increased by a factor 1 /� as com-
pared to the negatives.

One should see clearly the very different meaning of K
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and Ksites. The dynamical quantity K is the number of instan-
taneously existing capillary bonds:

K = 2DD�
gc�

b

d
�

0

scrit

�b�s��vol�s�ds . �46�

K rapidly decays close to zero in dilute systems. As K comes
closer to the value of Ksites in a very dense system, the bind-
ing frequency fbind
gc�←r

u 
K−Ksites �43� goes to zero be-
cause steric hindrance prohibits the formation of further cap-
illary contacts: K−Ksites gives the number of vacant sites for
capillary bonds. Therefore Ksites is the maximum number of
“docking sites” for capillary bonds. It is a pure geometric
property and grows with scrit, because scrit	0 still allows for
a slight rearrangement of particles in the formation of new
capillary bridges without breaking existing ones. In the limit
scrit→0, Ksites is the number of “contact sites.” We therefore
expect Ksites to equal the number of exact contacts, 2D=4. So
let us compute Ksites�� ,scrit� in the following paragraph.

The maximum number of possible bonds, Ksites, is an
athermal function of density � and the critical liquid bridge
length scrit. We determine Ksites from the obvious fact, that
the granular dynamics is unaffected by the introduction of
forceless bridges: for �b=�u we recover the dry contact cor-
relation gc�

b +gc�
u =gc�

at. This is the athermal limit, or high tem-
perature limit of wet granular matter.

High temperature limit��b = �u,

gc�
b + gc�

u = gc�
at .� �47�

From the hysteretic bridge system �45� follows in this
forceless or high granular temperature limit �47�

�1 −
�u�vol

1 + �pass
�Ksites = �1 + �u�vol�K , �48�

gc�
b =

gc�
at

1 + �u�vol
. �49�

The � functions with the argument s suppressed are under-
stood to be evaluated at s=scrit. Inserting Eqs. �48� and �49�
in Eq. �46� yields

Ksites = 2DD�gc�
at

�
0

scrit

�u�scrit��vol�scrit�ds/d

1 − �u�vol/�1 + �pass�
�50�

=4
1 − �u + O�scrit

3 �
1 − �u + O�scrit

2 �
= 4 + O�scrit� . �51�

In the last line we have set D=2, so that we could use Eqs.
�10� and �14�. The result �51� is the second important con-
sistency test. Finding the number of exact contacts in the
jamming limit to equal four in Eq. �12� showed the consis-
tency of the free-volume argument applied there. Here in Eq.
�51� we find for any density that the different function Ksites
for the number of possible bridges sites equals four as well
when scrit=0. This is as intuitively expected and a confirma-
tion of the consistency between the hysteretic system �45�

and the near-contact pair correlation. In view of the numeri-
cal finding Zsim=2 for the derivative at contact of the pair
correlation �as defined in Eq. �23�� we remark that the en-
tirely analytic description by the hysteretic system gives in
general Ksites=8 /Z+O�scrit�, which is why the consistency is
nontrivial and the finding Zsim=2 fits favorably into the en-
tire picture.

Thus the hysteretic system �45� provides a direct connec-
tion between the static granular properties captured in Ksites
and the granular system in motion at positive granular tem-
perature which we are treating in general. We remind that
Ksites is determined by the steric self-hindrance and therefore
a pure geometric property independent of the granular tem-
perature. When inspecting a snapshot of a close granular
packing we can find local cases of contact coordination
�scrit=0� higher than 4. These are fluctuations within the
granular ensemble, while Ksites and K are mean-field quanti-
ties. Of course, for a finite bridge length scrit	0, a mean
bridge coordination K� �0,Ksites� with Ksites higher than four
is possible due to elongated bridges, as described by Eq.
�50�. Before we evaluated the expression �50� of Ksites for
positive scrit �plotted in Fig. 9�, it is enlightening to switch on
the capillary forces in the following section because this al-
lows us to apply Ksites to “frozen” wet granular matter.

B. Switching on the force of capillary bridges

Under the attraction of a liquid bridge, the pair correlation
gb�s� of connected neighbors falls off faster than gu�s� for
unbound particles, depending on the granular temperature
T /Ecb compared to the bridge energy. The logarithmic de-
rivative of the radial pair correlation is to be interpreted as
the effective radial force �49,50�, �F=�s ln g�s�, as discussed
before in Sec. II B. This exponential dependence can be jus-
tified as the solution of the Fokker-Planck equation derived
in �45�. Moreover, in the context of the hysteretic interaction
of wet granular matter this exponential factor has been suc-
cessfully applied in the case D=1 �cf. Eq. �3� in �17��. There-
fore, we proceed by switching on the liquid bridge force to
the physical value of the minimal capillary model �10�, Fb
=Ecb /scrit, including this exponential in the short-range de-
pendence of the pair correlation function for bridges neigh-
bors:

�b�s,T� = �u�s�exp�−
Ecb

T

s

scrit
� . �52�

At low granular temperatures this exponential gives rise to
shorter average bridge lengths, and describes the reduced
probability that a bridge reaches its critical length scrit. There-
fore the hysteretic system �45� describes the sticking of par-
ticles and the onset of clustering.

We have discussed in Sec. III A that steric effects in the
dynamical system limit the mean number of bonds to a maxi-
mum of Ksites, and we derived that Ksites converges to the
number of isostatic contacts in the limit scrit→0. Here this
connection is put on firm grounds with a clear physical in-
terpretation attributed to Ksites: Ksites is the bridge coordina-
tion K of solid wet granular matter.
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Proof of K→Ksites in the low temperature limit. Solving
Eq. �45� for K /Ksites, we obtain

K�T,scrit,��
Ksites�scrit,��

=
1

1 + X�T�/Y�T�
, �53�

with

X�T� = �b�scrit,T�Ksites��pass + 2��vol, �54�

Y�T� = 8I�T��gc�
at��pass + 1� , �55�

where I�T� stands for the integral over bond states,

I�T� = �
s=0

scrit

�b�volds/d = �
s=0

scrit

e−Ecbs/Tscrit�u�volds/d

=
Tscrit

Ecbd
+ O�T2� , �56�

which goes linearly to zero, while �b�T�
e−Ecb/T vanishes for

T→0 faster than any power of T. Hence X /Y →0 so that Eq.
�53� implies

lim
T→0

K = Ksites �57�

as conjectured.
This low temperature limit �T
Ecb� is of general interest

since it represents a sticky gas of ideal spheres, which serves
as a model for aggregation in various areas of physics �51�
and astrophysics �52�: Once two particles had contact, the
remaining degree of freedom is tangential motion. The ana-
lytic prediction of formula �51� is Ksites=4 in the limit of
exact contacts, scrit=0. In order to evaluate Eq. �50� for posi-
tive scrit we insert the near-contact decay �u given by the
general results �10�, �14�, and �32�, setting D=2. The explicit
expression for �u which we use throughout this article for
results without free parameters is given in Appendix B. Here
we take into account known formulas for the contact value
gc�

at at low densities, as well as higher corrections to the free
volume theory. Inserting this expression in Eq. �50� results in
the curve shown in Fig. 9. We have performed simulations in
this low-temperature limit. The wet granular matter was ini-
tially prepared in a gas state with T=50Ecb and cooled by the
formation and rupture of bonds. The insets in Fig. 9 show
final states when the granular temperature T is more than one
order of magnitude below Ecb and no further change in the
configuration was observed on exponential time scales. The
symbols in Fig. 9 have been measured in this final state. In
perfect agreement with the prediction of Eq. �51�, we find in
the contact limit, scrit→0, the coordination to be exactly 4.
Moreover, the increase in the number of bonds per particle
with the increase of the maximal bridge length scrit is found
to be in very good agreement with the simulations.

Further analytic results for high densities are shown in
Fig. 10�a�. As is intuitively clear and shown by the family of
curves in Fig. 10�a�, the convergence of the limit scrit→0 is
not uniform with respect to density, since Ksites is pinned to
the kissing number 6 of the monodisperse crystal density at
�max.

IV. EQUATION OF STATE

We are now in the position to derive the equation of state,
P= P�T ,��, for wet granular matter with capillary bonds ten-
sile up to the rupture length scrit. The cohesion of capillary
bridges will reduce the pressure as compared to a dry hard-
sphere system of equal temperature. By virtue of Eq. �53�,
we have the bridge coordination number K as a function of
density � and granular temperature T. Since in the minimal
capillary model �10� the bridge force is assumed to be inde-
pendent of the bridge length s, the knowledge of the mean
number of bridges K will allow us to evaluate the reduction
of the pressure due to cohesion. Furthermore, the particle-
particle collisions are enhanced by the bridge attraction, in-
creasing the contact correlation. The contact correlation gc�

wet

for wet granular matter derives from Eqs. �45� and �46�:

capillary bridge regime

s dcrit /

K
T(

=
0
)

0.10.010.001

FIG. 9. �Color online� The capillary bridge coordination K in the
low temperature limit, T
Ecb. As proven in the text, K converges
to the athermal function Ksites�� ,scrit� in this low temperature limit.
The solid line is Ksites��o ,scrit� over a wide range of maximal bridge
lengths scrit. Points represent final states of free cooling simulations
with 1000 particles of uniformly distributed polydispersity �d
=0.06d. The open symbols are clusters with winding number one
�cylindrical topology�, connected over one periodic boundary on a
rectangular domain. Such structures have internal tensile strength
which necessitates a slightly increased coordination, visible as a
small shift compared to the closed symbols which represent local-
ized clusters �as the two examples drawn in the plot�. As predicted
by Eq. �51� of the presented theory, the structures emerging with
exact contacts, scrit→0, are found to be precisely isostatic, Ksites

=4. The line is the analytic result �50�, for which very good agree-
ment is found with the simulations over the entire range of the
capillary bridge regime, 0�s�0.2r �with r the particle radius�,
which is indicated in the figure. Beyond this regime, the theory does
not hold because in the derivation we limited ourselves to the lead-
ing order in scrit /d. More importantly, the rupture length scrit cannot
be further increased beyond the capillary regime by simply increas-
ing the liquid content in the granular sample. As mentioned in the
introduction, liquid bridges residing on the same sphere would
rather merge �21� into more complicated objects.
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gc�
wet = gc�

at �1 + �pass��1 + �b�vol�Iu

�1 + �pass − �u�vol�Ib + �2 + �pass��b�volI
u �58�

with the integrals

Iu/b = �
0

scrit

�u/b�s��vol�s�ds . �59�

The analytic expression �58� for the contact correlation of
wet granular matter, gc�

wet, is indeed strictly greater than the
one of the dry system, gc�

at, to which it converges in the high
temperature limit when the capillary energy Ecb is small
compared to the granular temperature T. This limit follows
obviously from Eq. �58� because the functions with super-
script index “b” turn into those with “u” for T�Ecb. In the
low temperature limit, liquid bonds oscillate with an ampli-
tude proportional to the kinetic energy which equals T on

average, so that the probability to find the particles at con-
tact, gc�

wet, grows proportional to 1 /T, as can be derived easily
from Eq. �58� using the expansion �56�.

A. Frozen degrees of freedom

As the system starts to cluster at temperatures close to
Ecb, voids remain between the clusters with linear dimen-
sions large compared to the particle diameter. Clearly, this
growing length scale, which is set by the sizes of clusters and
voids, is not captured by the short-range behavior of the pair
correlation function. Here we advance the theory beyond the
level of two-particle correlations to take correlation on large
scales, such as the collective particle motion in a cluster, in
an approximative fashion into account.

The collective motion of a cluster is due to stable capil-
lary bonds which impose constraints, such that the internal
degrees of freedom of clusters are frozen. Since K is the
number of instantaneous capillary bridges of which the frac-
tion erf��Ecb /T� with kinetic energies below Ecb forms stable
bonds, we have

Kfrozen = K erf��Ecb

T
� �60�

for the number of frozen degrees of freedom.
We are interested in the density of the remaining degrees

of freedom. The idea is simple and powerful: As a general
mathematical property of triangulations, there are on average
precisely six Voronoï neighbors �42�, independent of density
or ordering. In Fig. 11 we can observe that the Voronoï
neighbors with stable bonds contribute less to the area 1 /n of
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6
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T E/ cb(b)
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K
sites

�

�
c

0.75 0.80 0.85 �
max

(a)

FIG. 10. �a� Maximum number of “docking sites” for capillary
bonds on a particle, Ksites, which is possible in two dimensions
given the pinch-off length scrit of capillary bridges and the density
�. Ksites is independent of the temperature because it is a pure
geometric quantity: the number of possible neighboring sites. Here
Ksites is shown as a function of � for different scrit ranging from
scrit /d=0.07 �solid curve�, 0.04, 0.02, to 0.01 �short dashes�. As is
shown in the text, Ksites is the coordination number in the zero
temperature limit. While the mean coordination number K rapidly
goes to zero with density for finite temperature, the zero-
temperature limit is �4 for all densities, because the system clus-
ters. The dotted curve represents the limit scrit→0. The longer scrit

the closer Ksites comes to six, the number of next neighbors in two
dimensions. In the limit scrit→0 the coordination Ksites converges to
the number of exact contacts which is precisely four. �b� The cap-
illary bridge coordination K drops down in the vicinity of the criti-
cal temperature as clustered structures break up. For this plot the
mean density is chosen to be �=0.75.

Total area = 1/n

6n
free

1

6n
frozen

1

freefree

frozenfrozen

FIG. 11. �Color online� A local configuration of two-
dimensional wet granular matter at moderate density. The cell bor-
ders are located at one half of the surface separation for polydis-
perse diameters �not half center distance�, so that each cell contains
one particle completely. Since there is one particle in each Voronoï
cell, the mean area equals the inverse density. In Sec. II A we have
used the Voronoï tessellation to compute the derivative of the pair
correlation at contact for a dry and dense system. For such a dense
system, the Voronoï cell resembles a hexagon with a size propor-
tional to �d+s�2, where s is the particle separation. In wet granular
matter, we distinguish the densities nfree and nfrozen associated with
the binding status of the capillary interaction. A stable capillary
bond contributes 1 / �6nfrozen� to the cell area, 1 /n, and thus less than
an unconnected neighborhood with 1 / �6nfree� does. The areas sum
up to the cell size, so that these densities are related as expressed by
Eqs. �61� and �62�.
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the Voronoï cell. This picture suggest a two-fluid model with
frozen and free neighborhoods as the two constituents. The
fraction of frozen and free triangulation bonds is propor-
tional to Kfrozen and Kfree, respectively, and the area contribu-
tions associated to each bond sum up to the total size of the
Voronoï cell:

Kfrozen + Kfree = 6, �61�

Kfrozen

nfrozen
+

Kfree

nfree
=

6

n
. �62�

Because of this reciprocal sum rule for the densities one may
call this a reciprocal two-fluid model. The densities nfree
�n�nfrozen introduced by Eq. �62�, generalize the mean
density n by decomposing the volume 1 /n per particle into
bound and free neighborhoods on the mean-field level.
1 / �6n� is the average volume of a neighborhood, since there
are six neighborhoods on average. The contribution of a free
Voronoï neighbor is 1 / �6nfree�, and 1 / �6nfrozen� is the contri-
bution of a neighborship frozen by a capillary bridge. Put in
physical terms, nfrozen is the local density inside a cluster.

The density nfrozen of the stable bond component follows
analogously to Eq. �2� when averaged with the additional
exponential factor �52� due to the capillary force:


�1 +
s

d
�D�

frozen
=

nJ

nfrozen
, �63�

�¯�frozen =

�
0

scrit

. . . �frozen�s��vol�s�ds

�
0

scrit

�frozen�s��vol�s�ds

, �64�

�frozen�s� = exp�− �gc�
at��1 +

s

d
�D

− 1� −
Ecb

T

s

scrit
� .

�65�

Without affecting the leading order in s /d one is free to
replace the last s in the exponent �65� by s+s2 / �2d�, so that
the integral �63� is elementary resulting in

nJ

nfrozen
− 1 = ��1 +

scrit

d
�D

− 1�� 1

�
−

1

e� − 1
� , �66�

� = ��1 +
scrit

d
�D

− 1���gc�
at +

Ecb

T

d

Dscrit
� . �67�

We point out that Eq. �66� implies Eq. �4� in �17� for D=1.
From the Eqs. �53�, �60�–�62�, �66�, and �67� follows the

density of degrees of freedom which are not frozen out by
capillary bonds, nfree�T ,scrit ,��. One may regard nfree as the
density of clusters.

We remark that the two-fluid model of neighborhoods is
the only concept presented in this theory of wet granular
matter which cannot be generalized in a straightforward
manner to three dimensions, because for D=3 the number of
Voronoï neighbors is not a universal constant �such as 6 for

D=2 and 2 for D=1�, but depends on the granular order
�reaching its minimum value 12 for close packing and its
maximum of approximately 15.5 in the ideal gas limit� �53�.
The reason for this is that three-dimensional space cannot be
filled with tetrahedrons, while flat space can be tiled by tri-
angles. As a consequence, the number of constituents in the
two-fluid model of neighborhoods would not be conserved
for D=3 and the numerator on the right-hand side of Eq. �62�
is not a constant.

B. Pressure of wet granular matter

Here we arrive at the pressure P�T ,�� using the density
nfree�T ,�� �61� of degrees of freedom, the coordination
K�T ,�� �53�, and the contact correlation gc�

wet�T ,�� �58�. The
pressure is the trace of the stress tensor

P = −
1

D
tr�= . �68�

The stress tensor �= =�= kin+�= force describes the flow of mo-
mentum. The kinetic term has components �i,j

kin=
−	k

N�mvi
�k�v j

�k���r−r�k���. With the granular temperature T
= �mvivi�, its trace yields nT for uncorrelated particle motion
�as in an ideal gas�. In general we have the kinetic contribu-
tion

Pkin = nfreeT , �69�

wherein there frozen degrees of freedom have been taken
out. For moderate densities, one may interpret Eq. �69� as the
kinetic contribution to the pressure due to a gas of clusters.

The interparticle forces F give rise to the Cauchy tensor
�= force, which is the tensor product of the center-to-center vec-
tor r and the pair force F,

�= force =
nfree

2
�F � r� , �70�

so that �= force is diagonal for radial forces. The factor 1 /2
assigns half of the momentum current to either of the inter-
action particles, i.e., r /2 may be seen as the transport vector
within the Voronoï cell. The Cauchy tensor �70� has contri-
butions only by the unfrozen pairs of particles with density
nfree, because in frozen neighborhoods the repulsive momen-
tum exchanged in collisions is exactly balanced by the bridge
attraction under the time average on the right-hand side of
Eq. �70�.

A comment on the significance of the reciprocal two-fluid
model as represented by Eqs. �61� and �62� is in order here.
We consider for instance a compressed state of wet granular
matter with Kfrozen around five and Kfree around unity. While
Kfree is small, the prefactor nfree in Eq. �70� is not necessarily
small. From Eqs. �61� and �62� follows that both, nfree and
nfrozen, converge to nJ as the system gets jammed �n→nJ�, so
that the repulsive dominated state is correctly described by
the Cauchy tensor �70� which grows beyond all bounds as
n→nJ. If one had �in contradiction to the additivity of areas�
summed up densities linearly instead of the reciprocal sum
rule �62�, the free density would vanish or could even be-
come negative under such conditions.
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It is finally easy to determine the time average on the
right-hand side of Eq. �70� for the two different forces acting
in wet granular matter, the delta force in collisions of hard
particles and the flat force Fcb=Ecb /scrit of the capillary
bonds. In a collision at time tcoll the radial momentum �p is
transferred instantaneously:

�Fcoll � r� = ��p � r��t − tcoll��

= 1��p�r,− v����r,− v����r − d��

= − 1gc�
wetn�DdDT . �71�

In the last equality the � function gives rise to the contact
correlation gc�

wet and the trivial integration of angles leaves
�DdD−1. 1 is the unity matrix and � is the Heaviside step
function. Inserting Eq. �71� in Eq. �70� and taking the trace
�68� yields

Pcoll = 2D−1nfreeT�gc�
wet. �72�

The cohesive virial due to capillary bridges is

�Fcb � r� = 
K
Ecb

scrit

r � r

r
� =

1

D
K

Ecb

scrit
�d + s� �

1

D
K

Ecb

scrit
d .

�73�

Hence the final result

P = nfreeT�1 + 2D−1�gc�
wet� − nfreeEcb

K

2D

d

scrit
, �74�

where the last term is the bridge cohesion �73�. Since nfree,
the contact correlation gc�

wet and K have been derived explic-
itly in Eqs. �61�, �58�, and �53� as functions of � and T, we
have the equation of state for wet granular matter, P
= P�� ,T�.

Figures 12 and 13 show the analytic result �74� as a func-
tion of the granular temperature T and the density �. In the
high temperature limit wet granular matter behaves as a
hard-spheres system. Below the critical point granular clus-
ters are predicted to segregate due to the mechanically un-
stable branch of the pressure as a function of density, which
appears in Fig. 13 below the critical temperature. Figure 14
provides a closeup of the critical point of wet granular matter
and its spinodal. The critical density of this transition is high,
because the particles have to be close enough in order to
form a dynamical capillary network. As we show in Fig. 15,
the critical density is determined by the length scale of cap-
illary bridges, such that the rupture length scrit scales with the
mean particle separation s̄. Moreover, the rupture length is
approximately four times the mean particle separation, scrit
�4s̄ �dashed line shown in Fig. 15 for comparison�. This
result is to be compared with the very same ratio for the
reported critical density of the unclustering effect �17�: In the
free cooling of dense one-dimension wet granular matter, the
granular network was found to break up into granular drop-
lets which precipitate out of the homogenous intial state, as
soon as the density exceeded a critical value. This critical
density was shown numerically and analytically to be set by
scrit�3s̄ �17�. The different prefactor is due to the additional
cooling dynamics and the dimensionality D=1. The theory

of wet granular matter presented in this work predicts this
transition to persist in higher dimensions.

As we shorten the rupture length scrit �which can be easily
done experimentally by evaporating the wetting liquid�, the
dry system is approached in such a way that the spinodal
narrows in the T−� plane and is shifted to the jamming
point, where it eventually shrinks to a line and vanishes.
Figure 15 shows the convergence of the critical density to the
jamming density. Since the capillary bridge regime sets an
upper limit on the rupture length, the critical point is con-

T E/ cb

P
d

D
/
E

c
b � = 0.1

FIG. 12. �Color online� The pressure P of wet granular matter is
shown as function of the granular temperature T. The dimensional-
ity is D=2 and the covered area fraction is �=0.1, so that at high
temperatures the system is a dilute gas. The maximum bridge length
is scrit=0.07d. The behavior below the critical temperature Tc

=0.274Ecb of wet granular can be understood in the following way:
The system agglutinates to clusters. With these effective particles
the pressure is reduced according to the reduced number density of
effective particles. The breakup of clusters is reflected by the rising
pressure around Tc. The straight line is the athermal pressure of
hard disks, Pdry=ngwall

at T which is reached asymptotically when the
granular temperature is higher than the energy scale Ecb set by the
capillary interaction.
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FIG. 13. �Color online� Isotherms of wet granular matter for the
realistic rupture length scrit=0.07d. In the high temperature limit the
liquid bridges forfeit their influence on the dynamics, so that the
equation of state reduces to the hard sphere pressure. This can be
seen by the two black isotherms of wet granular matter, of which
the higher is at T=Ecb and converges to the top curve in the limit
T�Ecb. The lower black isotherm is at T=0.2Ecb and exhibits an
unstable branch. The critical point is at Tc�0.274Ecb �cf. Fig. 14
for a closeup�.
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fined on the density axis between the ordering transition at
�o and the jamming density �J. The critical temperature al-
most exclusively depends on the bridge energy, according to
Tc�Ecb /4, over the entire capillary regime.

With this discussion of transitions occurring in wet granu-
lar matter the presentation of our theory for wet granular
matter is completed. The reader may find in Appendix C a
brief methodical extension of the theory where a self-
consistent equation is derived for future works.

V. CONCLUSION

Starting with the hard-sphere fluid, an expression �10� for
the narrowing of the near contact pair correlation was de-
rived, which describes in the jamming limit the delta peak of
2D isostatic contacts per particle, in agreement with the ac-
cepted value of simulations. In the gas and fluid regime the
fall-off predicted by this expression for the pair correlation at
contact was found to be well confirmed by simulations. We
then addressed the nonequilibrium case of wet granular mat-
ter by the introduction of capillary bridges which are formed
hysteretically. The description in terms of the pair-correlation
function was extended with six different nonvanishing corre-

lation coefficients which take the bridge status into account
and allow for the hysteretic dissipative dynamics. The coor-
dination number of bonds was computed analytically as a
function of the rupture length of the capillary bridges, the
granular temperature, and the density. The limiting case of
strong bonds led to the sticky gas dynamics for which simu-
lations have been performed which showed very good agree-
ment with the analytic prediction of the coordination number.
Based on the derived expressions for the contact correlation
and the bridge coordination, we finally computed the pres-
sure of wet granular matter analytically as a function of den-
sity and granular temperature. Here a method was put for-
ward, which describes the effective degrees of freedoms in
order to take the correlated motion of particles glued to clus-
ters into account. The isotherms of wet granular matter were
found to have an unstable branch which gives rise to the
segregation of dense clusters. The critical temperature of this
transition was derived to be approximately one quarter of the
capillary bond energy. The critical density is directly related
to the pinch-off distance of the capillary bridges. A close
relation to the unclustering effect reported in one dimension
�17� was shown, for which reason this effect persists also in
higher dimensions.

It will be interesting to probe the critical point of wet
granular matter experimentally and by direct simulations. As
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FIG. 14. �Color online� A closeup of the transition region in wet
granular matter. The dashed line in the main panel is the spinodal of
the homogeneously driven wet granular system in D=2 dimensions.
The solid black lines are wet granular isotherms around the critical
point, which is located at Tcrit=0.273�5�Ecb for scrit=0.07d. The
change of the critical point with the amount of added liquid �repre-
sented by scrit� is shown in Fig. 15. The curve in the upper left
corner is the athermal pressure Pdry of the hard disk system �31�
without liquid bridges, and the line at the bottom is the ideal gas
pressure �PiddD��� has a defined slope�. Pdry=gc�

atPid is increased
compared to the ideal gas by the Enskog factor gc�

at. The pressure of
wet granular matter is reduced compared to the dry system Pdry due
to the capillary cohesion. The inset shows the spinodal in the
temperature-density plane, where the critical temperature can be
clearly determined.

/ 4 =

J

/ d

FIG. 15. �Color online� The influence of the rupture length scrit

on the position of the critical point in the phase diagram Fig. 14 of
wet granular matter. The position of the critical point is described
by the critical parameters ��c ,Tc�, which are plotted on the left and
right vertical axis, respectively. Solid lines result from the full
theory �74� by solving for the intersection of ��P�� ,T�=0 and
��

2 P�� ,T�=0. For the critical temperature we find a very mild varia-
tion with the rupture length, so that over the entire physically rel-
evant range of capillary interaction we have Tc�Ecb /4. The influ-
ence of the rupture length scrit on the critical density �c can be
understood very clearly with the help of the dashed line. The dashed
line is the implicit equation scrit=4s̄��� for the density �, which is
expressed in terms of the mean particle separation s̄���
=d�D��J /�−1�. Since the dashed line closely follows the full
theory, the critical density is such that the mean particle separation
scales with the rupture length scrit. This shows that both intrinsic
characteristics of the capillary interaction, the rupture length and the
bridge energy Ecb, determine the critical point of wet granular
matter.
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we have shown, the position of the critical point is deter-
mined by the length and energy of the capillary bridges.
These quantities can be controlled very accurately in an ex-
periment of shaken wet granular matter. Therefore the mea-
surement of the critical temperature will allow to discern
between extensions such as the nonlinear coupling discussed
in Appendix C.

Future analytic work includes the background contribu-
tion gB in the dense regime, since our numerics indicate that
the pair correlation is flatter near the contact as predicted by
gA alone. This task might be addressed in conjunction with
the analogous background contribution in three dimensions,
for which in the jamming limit an integrable power-law di-
vergence, gB
1 /s�, has been reported in numerical studies
�with �=0.5 �54� or �=0.6 �34�� and experiments �55�, but is
as well lacking a theoretical explanation at present.

ACKNOWLEDGMENTS

Discussions with Martin Brinkmann, Svenja Hager, Jür-
gen Vollmer, Klaus Röller, and Mario Scheel are gratefully
acknowledged.

APPENDIX A: THE BACKGROUND CONTRIBUTION gB

1. Weighting factors

With gA in Eq. �10� we considered the four �cf. Eq. �12��
A neighbors, which form isostatic contacts at jamming, sA
→0 for �→�J �3�, and are separated by sA according to Eq.
�4� before jamming. Analogously, the separation sB of the
two B neighbors is weighted by

PB�sB� 
 exp�−
�1 +

sB

d
�2

− 1

�max/� − 1
� . �A1�

While in Eq. �4� the denominator in the exponential is cA
=�J /�−1 so that sA→0 at the jamming density, in Eq. �A1�
the denominator is cB=�max /�−1 since the blocked B is
only forced to form a contact, sB→0, for a perfect crystal
with �→�max. Of course, this limit is kinematically un-
reachable because the system comes to rest at the jamming
density �J��max. �max would be reached. We note that cB is
a small dimensionless quantity: For �	�o=0.71 we have
0�cB�0.2774.

Close to jamming, the B neighbors are fixed in space by
particles other than the reference particle. Except for arch-
like constructions which are rare for frictionless particles,
and would include second Voronoï neighbors keeping B at a
separation larger than our region of interest, sB	scrit, this
hindrance is due to the A neighbors. Therefore the probabil-
ity gB�sB� to find a B neighbor at separation sB from the
reference particle �sketched with hatching in Fig. 17� is
given by the integral over all configurations where four A
neighbors hinder two B neighbors.

The configurations will be weighted by a phase space fac-
tor C and the exponential factor PB. We are above the order-
ing density �o, so that the neighborhood has �by definition of

the phase� hexagonal order as sketched in the inset of Fig.
16. Projecting the configurations with the two B neighbors
blocked �gray subset in Fig. 16� on a single � axis, we find
the configuration space factor

C��� =
3�5� − 6��

2�2 . �A2�

In the sequel we abbreviate

�vol�s� 
 1 + s/d . �A3�

for the volume factor �A1� in D=2. Wide gaps of length sB
are exponentially suppressed by PB.

2. Configuration space

Let us now address the configuration space plotted in Fig.
17. If the opening angle � of the A neighbors exceeded
�T�sA�,

cos
�T�sA�

2
=

�sA�2d + sA�
d + sA

, �A4�

the B particle could slip through and turn into an A neighbor,
which is defined by having a free path towards the reference
particle. This transition corresponds to the neck connecting
different jamming island in the configuration space. Only
along the line �PQ in Fig. 17� defined by �=�c�sA�,

cos
�C�sA�

2
=

sA + d

2d
, �A5�

the B neighbor can touch the reference particle, so that sB
=0. Equations �A4� and �A5� define the upper boundary of
the domain of integration for all sA,
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FIG. 16. The angular configuration space of four neighbors
close to the reference particle. These we denote as A neighbors. The
faceted inner subset shown in gray is the subspace conditioned to
the property that two further particles, the B neighbors, are hinder
by the A particles in approaching the reference particle. The pro-
jection of this subset onto an � axis �for the angle between a block-
ing A pair, �1 or �3 in this example� gives rise to a linear configu-
ration space factor C���. Obviously a B neighbor acts like a wedge
driven between two A neighbors, and therefore increases �. This is
taken into account by the weighting factor PB�sB� which favors
shorter separations sB between the particle B and the reference par-
ticle, depending on the density �.
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�max�sA� = ��C�sA� , sA/d � �2 − 1,

�T�sA� , sA/d � �2 − 1,
� �A6�

which is continuously differentiable but not smooth at the
point Q.

The lower boundary is

cos
�S�sA,sB�

2
=

�sA + d�2 + sB
2 + 2dsB

2�sA + d��sB + d�
, �A7�

where B hits A.
The simple lower bound on �,

cos
�min�sA�

2
=�1 − � d/2

d + sA
�2

, �A8�

which ensures that the A neighbors do not overlap is without
applicatory relevance, as it implies that the B neighbor is
pushed out to sB /d	�3−1�0.73. This is suppressed in the
dense regime �	�o by the factor F of Eq. �A1�.

The configuration space ends to its right in a cusp where
the lower and upper bound intersect at

sA
cusp�sB� = �sB

2 + 2dsB + 2d2 − d . �A9�

This cusp converges to the point Q for sB→0.
With the integration bounds �A6�, �A7�, and �A9�, and the

weighting factors �A1� and �A2� we have

gB�sB� = NPB�sB�

���
0

sA
cusp�sB�

dsAPA�sA��vol�sA��
�S�sA,sB�

�max�sA�

d�C����2

�A10�

=NPB�sB�� sB

d
I1�n� + � sB

d
�2

I2�n� + O�� sB

d
�3��2

.

�A11�

We emphasize that the configuration space �sA,�� describes
the relative position of one A-neighbor sketched symmetri-
cally in Fig. 17 �see also Fig. 18�. Since there are two inde-
pendent A neighbors involved, their configuration is the di-
rect product �sA1 ,�1�� �sA2 ,�2�. On this account the
configuration integral is squared in Eq. �A10�, with the im-
portant consequence that the leading order in gB�sB� is qua-
dratical. The normalization constant N is determined by the
knowledge that there are two B neighbors. While the expo-
nential prefactor dominates the long range decay, we expand
the near-contact increase in sB /d. Substituting the dimen-
sionless area zA= ��1+sA /d�2−1� /cA for integration in favor
of the particle separation sA, the expressions Ii, i=1,2 are of
the form

Ii = cA�
0

1/cA

e−zAf i�cAzA�dzA, �A12�

with

f1�x� =
3�x − 1���x�

2�2��3 − x��x + 1�
, �A13�

f2�x�
f1�x�

=
2

x − 3
−

2

x − 1
+

6�x + 1

��x��3 − x
−

6�3 − x

��x��x + 1
− 1,

A

A

A

B

AA

B

A

B

A

A

sB

A

B

A
sA

�

s dA /

0.2 0.4 0.6 0.8 10

Q

�

�/3

�/2

2 /3�

P

s dB /

0.05

0.30

0.60

�C A( )s

�T A( )s

�S B( , )ssA

�min A( )s

R

FIG. 17. A section of the configuration space of neighboring
particles. Within the gray domain the particle denoted by B is
blocked: The two neighbors labeled A sterically hinder the particle
B from approaching the reference particle �shaded�. Only at the
boundary �C�sA� �curve PQ ranging from �sA,��P= �0,2� /3� to
�sA,��Q= ���2−1�d ,� /2�� can the B neighbor touch the reference
particle. The probability gB�sB� to find a B neighbor at a separation
sB follows from integrating over the gray domain, which grows
with increasing sB. The lower bound, �S�sA,sB�, is plotted for the
values sB=0.05, 0.30, and 0.60. Large areas spanned by this neigh-
borhood are exponentially rare the higher the mean density �, so
that the probability distribution in this plot concentrates in the vi-
cinity of the upper left corner P as we come closer to the jamming
limit. At the line QR the B neighbor slips through and turns into an
A neighbor, so that QR is the transit to another jamming island in
configuration space. The corresponding transition rate is propor-
tional to the probability density along QR and therefore vanishes in
the jamming limit.

FIG. 18. �Color online� sA-� plot of Fig. 17 with the full sB

dependence shown on the additional vertical axis.
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��x� = � − 12 arcsin
�x + 1

2
. �A14�

The integrals Ii can be treated by expanding the functions
f i=	�f i

���x�:

=�!−���+1,1/cA�

Ii = �
�=0

�

f i
���cA

�+1�
0

1/cA

e−zz�dz .

�A15�

All incomplete gamma functions can be eliminated by virtue
of the recurrence relation �cf. �6.5.2� and �6.5.22� in �56��

��� + 1,1/cA� = ����,1/cA� + �− 1��cA
−�e−1/cA. �A16�

As is apparent from the recurrence relation, the result will be
of the form

Ii = Ri�cA� + e−1/cASi�cA� . �A17�

The regular part, for instance in first order of sB /d,

R1�cA� = cA

�3

2�
+ cA

2 9 − 2�3�

3�2 + cA
3 − 27 + 2�3�

3�2 + ¯ ,

�A18�

is a series expansion about the point of jamming, cA=0. It is
asymptotically diverging due to the factorial which appears
in the recurrence relation. Fortunately this does not restrain
us from an excellent approximation, since for the relevant
density, �	�o, the quality of the expansion increases for
more than 10 terms in the expansion �cf. panel �a� of Fig.
19�. The second part in Eq. �A17�, for which the first order of
sB /d is given by

S1�cA� = cA

�3

2�
+ cA

2 9 − 2�3�

3�2 + cA
3 − 27 + 2�3�

3�2 + ¯ ,

�A19�

and has a positive radius of convergence �cf. panel �b� in Fig.
19�. This part is overexponentially suppressed by the prefac-
tor exp−1 /cA close to jamming.

In the application to wet granular matter the subleading
order �sB /d�3�4�10−4 is negligible for a realistic value of
s�scrit�0.07d, whereby we have the concise result

gB�sB� = Ne−zBzB
2 + O�zB

3 � �A20�

with the abbreviation zB= ��1+sB /d�2−1� /cB and 1 /cB

��gc
at. The normalization 8��cB /2��gBdzB=2 according

the two B neighbors determines N in Eq. �A20�. Hence the
result �14�.

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE PAIR
CORRELATION IN TWO DIMENSIONS WITHOUT

FREE PARAMETERS

In our general derivation of the theory of wet granular
matter we distinguished between the jamming density �J and
the �highest possible� crystalline packing �max=� / �2�3�
achieved in monodisperse domains. The exact value of the

jamming density �J depends on many details such as the
distribution of polydispersity and the jamming protocol for
the increase of density. When we want to give explicit results
without free parameters on the bridge coordination
K�T ,� ,scrit� and the equation of state P= P�T ,� ,scrit� we do
this for weak polydispersity, where the difference between �J
and �max is negligible and the limiting case of “dry” disks
has been studied extensively.

1. High density

For monodisperse “dry” disks, �J=�max, there are higher
order corrections to the free volume result �9� available in the
literature which are incorporated in the final results on the
bridge coordination and the equation of state for wet granular
matter. These corrections are expansions with respect to x
=�J−� fitted to simulations:

gc
dense = �1

x
+ a0 + a2x2 + ¯ ��J

�
= �1

x
+ a0 + a2x2 + ¯ �

��1 +
x

�J
+ ¯ � . �B1�

Equation �B1� holds in the dense regime, �o����max,
above �o=0.71. The numerical coefficients are a0=−1.07
and a2=5.89 �31�, confirmed by our own simulations. Simi-
lar empirical expressions are also available for polydisperse
disks in the glass state �Eq. �6� in �23��.

(b)

(a)

FIG. 19. The radii of convergence rk for expansions around the
jamming point. The contribution blocked B neighbors give to the
pair correlation can be expanded in a series around the jamming
point, cA=0. The radius of convergence is given by the Cauchy-
Hadamard formula rj =1 /�j Kj for the term Kj�sB /d� j. �a� The
asymptotic divergence of the R series in Eq. �A18� poses no prac-
tical problem since few terms �less than 10� give sufficient accu-
racy. �b� The S series in Eq. �A18� converges.
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2. Low and moderate density

For the analytic treatment an explicit expression for the
contact correlation gc

at in Eq. �32� is needed �as the counter-
part to the dense expression �B1��. Aside from the trivial
one-dimensional case �57�, exact expressions for the contact
correlation of hard spheres are unknown for the dilute re-
gime. Yet there are well-established approximations in the
literature resulting from scaled particle theory �58,59�, from
the virial expansions �60�, as solutions of the Percus-Yevick
closure �61�, as well as heuristic expressions �62� such as the
Carnahan-Starling formula with corrections to better fit
simulation results �cf. Table I�.

As in the dense regime �B1� we shall use the Henderson-
Luding expression �31�

gc
dilute =

1 − 7�/16

�1 − ��2 −
�3/128

�1 − ��4 �B2�

for the uncaged regime, 0����o, and the merging func-
tion m���=1 / �1+exp���o−�� /m0�� with a crossover width
m0=0.0111 to smoothly connect the dense �B1� and dilute
�B2� expressions �31�:

g�s� = m���gdilute�s� + �1 − m����gdense�s� �B3�

with gdilute�0�=gc
dilute and gdense�0�=gc

dense as given by the
Eqs. �B1� and �B2�. The near-contact decay has been estab-
lished in the Eqs. �10� and �14� for �	�o, and in Eq. �32�
for 0����o:

gdilute�s� = gc
at�dilute

u , �B4�

gdense�s� = gc
at�dense

u = gc
at�dilute

u �1 + ��gc
at s

d
�2� �B5�

up to leading order in scrit with

�u�s�dilute = exp�− �gc
at��1 +

s

d
�2

− 1�� . �B6�

With the contact expressions �B1� and �B2�, as well as the
short-range decay formulas �10� and �32�, we have sufficient
information on the dry system over the entire density range.

We may therefore proceed by introducing the hysteretic cap-
illary bridges.

APPENDIX C: Self-Consistency of Bridge Coordination K

All results presented so far on the coordination K�� ,T�
and pressure P�� ,T� allowed explicit analytic results. Here
we want to demonstrate how to treat more complicated
source terms of the hysteretic system �45� numerically. Such
an extension of the theory could be motivated as follows.
The current of free �unbound� approaching particles could be
a function of the free density nfree instead of the mean den-
sity, since some of the unconnected neighbors traverse the
voids between clusters, so that Eq. �41� is changed to

�gc�←r
u + �gc← r�

u /�u�scrit� = �1 − K/Ksites��freegc�
at��free� .

�C1�

Obviously this approach is a lower estimate for the current of
freely approaching particles, which is why Eq. �C1� is con-
sidered as a methodical example rather than a physical com-
petitor to the theory presented above.

With the altered Eq. �C1� the hysteretic system �45� can
still be solved analytically to find the correlation coefficients
g= �gc�←r

u ,gc�←r
b ,gc�→r

b ,gc→ r�
u ,gc→ r�

b ,gc← r�
u �. Unlike before,

1

2

3

4

1 2 3 40

FIG. 20. Typical graphical solution of the self-consistent equa-
tion �C2�. Here the density is chosen to be �=0.6 and the granular
temperature is T=0.2Ecb.

TABLE I. The particle-particle correlation gc
at and the particle-wall correlation gwall

at at contact for different
spatial dimensions valid up to moderate densities. The center column shows the results of the scaled particle
theory and the right column contains the exact expression for one dimension, and heuristic expressions �63�
of Henderson �64� for two dimensions and Carnahan-Starling �65� in three dimensions.

D

Scaled particle theory Heuristic fits

gc
at gwall

at gc
at gwall

at

1 1

1−�

1

1−�

1

1−�

1

1−�

2 1−� /2

�1−��2

1

�1−��2

1−7� /16

�1−��2 −
�3 /128

�1−��4

1+�2 /8

�1−��2 −
�4 /64

�1−��4

3 1−� /2+�2 /4

�1−��3

1+�+�2

�1−��3

1−� /2

�1−��3

1+�+�2−�3

�1−��3
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due to the coupling �C1� and Eqs. �60� and �61�, the corre-
lations g are a highly nonlinear function of K. Therefore Eq.
�46� becomes a nonlinear self-consistent equation:

K�g�K,�,T�,�,T� = K . �C2�

The physical value K�� ,T� of the coordination is the solu-
tion K of Eq. �C2�. The numerical solution of Eq. �C2� is

found to be very robust, as Fig. 20 indicates. Plugging the
resulting self-consistent K�� ,T� back into the equation for
the pressure �74� of wet granular matter, we find that the
critical point is shifted from Tc=0.273�5�Ecb to Tc
=0.216�5�Ecb. This reduction of the critical temperature is
intuitively clear since with less particles arriving to form
bonds, the wet granular matter “evaporates” at lower granu-
lar temperatures.
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